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Abstract —The problem of two-dimensional scattering of a
transversal electric (TE) polarized wave by a dielectric object
can be formulated in terms of a hypersingular integral equation,
in which a grad-div operator acts on a vector potential. The
vector potential is a spatial convolution of the free-space Green’s

function and the contrast source over the domain of interest. A

weak form of the integral equation for the unknown electric flux

density is obtained by testing it with rooftop functions. As the

next step, the vector potential is expanded in a sequence of the

rooftop functions and the grad-div operator is integrated ana-

lytically over the dielectric object domain only. This method

shows excellent numerical performance.

I. INTRODUCTION

I N the development of biological applications in elec-

tromagnetic, numerical schemes are needed for fast

and accurate modeling of the electromagnetic field inside

a strongly inhomogeneous and 10SSYdielectric object ex-

posed to a known incident field. The problem of the

electromagnetic scattering by an inhomogeneous dielec-

tric object can be formulated in terms of an integral

equation for the electric field over the domain of the

object. Numerous methods have been developed, and it is

not our objective to survey them all. Instead, we concen-

trate on the k-space methods. It is our opinion that

methods of this type are applicable for three-dimensional

electromagnetic scattering problems owing to their stor-

age and computational efficiency.

The first method for solving the electric field integral

equation over the domain of a dielectric object was devel-

oped by Richmond [1], [2]. Here the method of moments

was used with pulse expansion functions and point match-

ing. The method of moments, however, needs an inver-

sion of a (large) matrix, limiting the application of this

method. Bojarski [3] introduced the k-space method, ob-

taining an iterative approach that reduces the storage and
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computation by using a‘ fast Fourier transform algorithm

for computation of the spatial convolution that occurs in

the integral equation, Subsequently, the conjugate gradi-

ent method combined with the fast Fourier transform was

developed [4], [5]. For the three-dimensional problems

and the two-dimensional case of TE polarization, there

were serious doubts as to the applicability of this conju-

gate gradient FFT method using pulse expansion func-

tions [6], [7]. Borup et al. [8] showed that in the conjugate

gradient FFT method serious inaccuracies are observed

for cylindrical objects in the TE polarization case. Re-

cently, Joachimowicz and Pichot [10] analyzed the source

of these errors. They introduced an integral equation

formulation using generalized functions and included sur-

face integrals in relation to surface charges at the discon-

tinuity surfaces. Better numerical performance has been

demonstrated, although erroneous behavior can still be

observed.

Recently, the weak form of the conjugate gradient FFT

method has proved to be an efficient and accurate scheme

for solving perfectly conducting plate scattering problems

[9]. Therefore, in the present paper, we employ this weak

form of the integral equation by testing the integral

equation with rooftop functions. Subsequently, a suitable

expansion procedure of the vector potential in the inte-

gral equation is carried out. The first result is that the

grad–div operator acting on the vector potential of this

hypersingular integral equation is integrated analytically

over the domain of the dielectric object only. The second

result is that we have maintained the simple scalar form

of the convolution structure of the vector potential (in

fact, two scalar convolutions). This means that the compu-

tation time of each iteration of our present scheme is

even less than the one of all previous conjugate gradient

FFT methods described above. Finally, it is noted that we

formulate the integral equation in terms of the unknown

electric flux density rather than in terms of the electric

field. The enforced continuity of the electric flux density

yields a correct implementation of the boundary condition

at the interfaces of (strong) discontinuity. Therefore,

the present scheme is much simpler than the one of

Joachimowizc and Pichot [10]. No surface integrals that

are directly related to surface charges have to be intro-

duced.
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We present numerical results for some two-dimensional

test problems. First, these two-dimensional test problems

are less computationally involved. Second, the two-dimen-

sional TE case exhibits stronger polarization effects than

the three-dimensional case. Effects of strong inhomo-

geneities are more visible in the two-dimensional TE case

than in the three-dimensional case. Numerical computa-

tions have been carried out for coaxially laye:ed cylinders.

The numerical results are compared with existing analyti-

cal solutions, and it is demonstrated that the present

weak formulation shows excellent results. Comparing the

results with the ones presented by Joachimowicz and

Pichot [10], it is directly observed that the weak form of

the conjugate gradient FFT method produces much more

accurate numerical results. This indicates that the present

weak formulation of the conjugate gradient FFT method

can be considered a simple and efficient tool for solving

(strongly) inhomogeneous 10SSYdielectric scattering prob-

lems.

11. THE DOMAIN INTEGRAL EQUATION

The vectorial position in the two-dimensional space is

denoted by x = (Xl, X2). The unit vectors in the xl ancl X2

directions are given by il and i2. The time factor

exp ( – i~ t) has been used for the field quantities in the

frequency domain. We consider the problem of scattering

by an inhomogeneous dielectric object with complex per-

mittivity

u(x)
E(x) =Er(x)eo+i —

6)

(1)

where ~r denotes the relative permittivity of the object

with respect to the lossless and homogeneous embedding

with permittivity ~0, and o denotes the electric conductiv-

ity of the object. The incident electric field is denoted by

E’ = (E:, Ej). In this paper, we formulate the scattering

problem as a domain integral equation for the unknown
electric flUX density D = (Dl, Dz) over the object domain

S as

E’(x) = ~ -(kf +grad div)A(x), Xes. (2)

1/2 and the vector potential A =where kO = @(eoI.Lo)

(Al, AZ) is given by

‘(X)=F-l[FIG(X)]FIX(X)*II ‘3)
in which W and W– J denote the forward and inverse

two-dimensional spatial Fourier transforms, and the nor-

malized contrast function, X, is given by

E(x)–eo
x(x) = (4)

E(x) “

Further, the two-dimensional Green’s function, G, is given

by

G(x) = +l)(kolX[), XGR2. (5)

III. TESTING AND EXPANSION PROCEDURE

We first introduce a discretization in the spatial domain

x = (xl, X2). We use a square mesh with a grid width of

Ax in both directions. For convenience, the discrete

values of x are given by a staggered grid [91:

‘$’m=(HAx’nAx)
(6)

The boundary of the discretized object now consists of

straight line segments parallel to the xl or X2 axis. We

assume that the discretized boundary ilS of the scattering

domain S lies completely in the embedding where x = O.

This is always possible, since we can extend the definition

of the scattering domain S by extending it with a zero

contrast function X. In each square subdomain with cen-

ter x = (n Ax, m Ax) and dimensions Ax X Ax, we as-

sume the complex permittivity to be constant with values

E,,,,.. Note that jumps in the (complex) permittivity func-

tion may occur at xl =(n – l/2)Ax and at X2 =(m –

l/2) Ax.

In order to cope with the grad–div operator in (2), we

test the two scalar equations of (2). Therefore we multiply

both sides of this equation by a vectorial testing function

@p)(xy~ – x), P = 1,2, and integrate with respect to x
over the object domain S. The testing vector function

@’J(x) = ~f~)(x)iP is a suitably chosen vector function

that will be defined later. We then obtain

S(
_ ~;J*(P) X(P)

n,m
– X) AP(X) dx

x$P;nEs, p=~,z. (7)

The last integral on the right-hand side of (7) is obtained

by using Gauss’s theorem on each subdomain where

lJ(p)(X~A – x)divA(x) is continuously differentiable and
by using the continuity of the normal component of this

function through the interfaces between these subdo-

mains. In the derivation of (7) we have assumed that

~(p)(x~P~ – x) vanishes for x = dS. Further, dP denotes

the pa;tial derivative with respect to XP, p = 1,2.In (7)

we expand the electric flux density, D, and the vector

potential, A, as

Dp(x) = ~o~dp,k,[lp’(x – 2$)) (8)
k,l

Ap(x) = zap,~,l@p)(x – xf/). (9)
k,l
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Using th~se expansions in the right-hand side of (7),

carrying out the divergen~e operator, and interchanging

the order of integration and summation, we obtain the

weak form of the integral equation

[

e~(x~~) = ~ V(p)(x~~;x~/)dPj~,l
k,l

(
– @(P) X(P) .

n,m> ‘if]) ap; k,l

2

+ ~ ‘P, Q(%, J7Z, k,l

I

‘~) .X(q) )aq;k,, ,
~=1

x$#s, p = 1,2 (lo)

in which

e~(x~~) =j@p)(x~~ – x) IZ;(X) & (11)

~(p)(-%;~t~) =&’lx% - ~)

(12)

( n,m, k,l)-~ ( , ) ( k>l)
U(P) X(P) . X(P) _ *(P) xy~ _ ~ *(P) x – X(P) ~

(13)

~p,q(xfl;x~]) = Jd @p)(@ - X)dq+(”)(x - Xp)) dx
s p ‘“n >“

(14)

In view of the partial derivatives in (14), the derivative

with respect to Xp of the function t#@)(x) must exist.

Therefore we take the rooftop functions [9] as testing and

expansion functions, viz.

@’)(x) =A(x1;2Ax)rI(x~ ;Ax)

*(2)( x)=n(xl; Ax) A(x~;2Ax) (’15)

in which A(x; 2 A x ) is the one-dimensional triangle func-

tion with support 2 Ax in the x direction, and II(x; A x) is

the one-dimensional pulse function with support Ax in

the x direction. The value of e; in (11) can be integrated

analytically for some particular choice of E;. With (15),

we are also able to calculate the functions U(P)(X), U(P)(X),

and wP,~(x) analytically. Substitution of the results in (10)

leads to

‘;(x;l?m) = ~ (bil/n,mdl;n+k-2, m+ckal:n+k-2,m)

k=l

- ~ ~ tk~a~;n+k_~,m+~_~ (16)
k=ll=l

4(A!L) = i (4?L,42. ~+1-1 + Cla,.n ~+1-,),> >>
1=1

-$1 ,$ltklal;n+k-l,m+ l-, (17)

in which x~~~ = S. The coefficients

vectors b$’1 and c are obtained as

@ _ ‘Ax)’
n,m

6

@ _ ‘Ax)’
n,m

6

955

bi!l, in and Ck of the

Eiz—l, m

2eo 2E0
—+—
‘n–l, m cn, m

Co

‘n, m—l

2.eo 260
—+—
En,m —1 ‘n, m

$0

e n,m

(18)

(19)

(H!k:(Ax)2 1 –1
~=— 4+2

6 ~ _l
1(20)

while the coefficients tklof the matrix t follows from

‘=(-:‘:) ((21)

With our particular choice of expansion functions, the

quantities dp: ~,~ and up; ~,~ are

ap.~,~ = Ap(x:’), p=l,2 ((23)

and are related via (3), in which the Fourier transforms

are replaced by discrete Fourier transforms (DFT’s). !3ub-

stituting (8) into (3) and taking into account that the IIFT

is the numerical counterpart of the continuous Fourier

transform when a trapez~idal integration rule is used, we

arrive at

ap.~,~ = DFT-l [@[ G] DFT[Xf~dp:~,n]],

p=l,2 (24)

in which

X(41L,2,J+X(41) )+1/2, m
~:)m =

2
(25)

As next step, in (24) we have to replace the continuous
transform of the Green’s function, G, by a discrete one.

In order to cope with the singularity at x = O, we use a

global representation consistent with our weak formula-

tion. We integrate the Green’s function over circular

patches with centers at the points x = (n A x, m A x) and

radius of 1/2A x and divide the results by the surface
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Fig. 1. The different geometries of the coaxially layered cylinder of the
first test case.

area 7-r(l\2 AX)2. The results are [1]

Equations (16), (17), and (28) represent an operator

equation for the unknown values of dPi., ~. To solve this

operator equation iteratively, a conjugate gradient scheme

[4] can now be applied.

IV. NUMERICAL IMPLEMENTATION

Using numerical techniques yields bounded domains

for the evaluation of the discrete Fourier transform. In

order to obtain reliable numerical results, we have to

investigate this truncation procedure [10], [11]. Using the

discrete Fourier transform and the convolution theorem,

the numerically approximated vector potential can be

written as follows:

aP; E,~ = (Ax)2 ~ gn_n,m_mjp,H,m,
n’, m’

in which the discrete functions jPi., ~ are

jPin,~ = x~idp;n,m.

From (30) and (4) it is easily verified

p=l,2 (29)

given by

(30)

that jo:., ~ = O,

x~~ @S. This restricts the necessary upper and lower

bounds in the summation of (29). Let us assume that the

domain S of the object lies completely inside a rectangu-

lar domain:

(n~i, -l) Ax<xl<(n~,X+l)Ax (31)

(mmin–l) Ax<.x2<(rnm=+l)Ax. (32)

In this rectangular domain we have IYs = n~= – n~i~ + 1

mesh points in the x ~ direction and MS = m ~~X– m~i~ + 1

mesh points in the X2 direction. For a correct evaluation

of aP~~3~, if x$~ G S, it has been shown by Brigham [13]

that (29) can be computed as a cyclic convolution using

DFT. The relevant DFT’s are defined on an extended

rectangular domain with IVc mesh points in the x ~ direc-

tion and Mc mesh points in the X2 direction, such that

4
g= J

L$)(kolxl) dx =

[

(&)Jl(ko~)H~l’(ko=Ax]
n,m

T(Ax)2 wtcirn,~ 4

(&)(H’’)(k$)’&) ‘fn=m=oo ’27)

With this global representation of the Green’s function,

the discrete values of the vector potential (cf. (24)) are Then, the values of up; ~,m are obtained as
obtained as

=( Ax)2DFT-’[DFT[g., n] DFT[X~~dP;.,n]],
ap;~,~ = (Ax)2DFTi&C [&,&,~>l],

aP;~,~

p=l,2. (28) x$~=s, p=l,2 (34)
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Fig. 2. Numerical convergence rate for the different geometries of the

first test case.
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Fig. 3. Comparison between the analytic solution and the present

method for the first test case.

with

~~,~ = DFTNC,MC [g.,~] (35)

]~; k,l = ‘FTNC, MC [jp; n,m 1 (36)

Here, the subscripts ~c and M= denote the relevant

DFT numbers. If the discretization of the object is chosen

i
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Fig. 4. Comparison between the analytic solution and the present
weak formulation for Err = 0.01 and Err = 0.001, respectively, for the
first test case.

with proper values of ~~ and MS, the minimum values of

~c = 2N~ and Mc = 2M~ will be sufficient to carry out

the convolution of (29), provided x~~~ c S. This has been

observed by Barkeshli and Volakis [12].

V. NUMERICAL RESULTS

The numerical convergence is measured by the normal-

ized root-mean-square error, Err:

in which IIr(”)l I denotes the norm of the residual error in

the satisfaction of the operator equation of (16) and (17)

over the domain S of the dielectric object in the nth

iteration. All computations were carried out on a VAX
3100 workstation. The DFT’s are efficiently computed

using fast Fourier transform (FFT) algorithms. The itera-

tion process is stopped when the normalized root-nnean-

square error falls below 10 – 3. Demonstrating that this

strong error criterion has to be imposed for our tests

cases, we also present numerical results for one test case
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Fig. 5. The different geometries of the coaxially layered cylinder of the

second test case.

wherein the iteration process is stopped as soon as the

normalized root-mean-square error is less than 10-2. The

incident field is taken to be a uniform plane wave propa-

gating along the xl axis, with the unit electric field vector

parallel to the X2 axis. In all cases we have taken a zero

initial estimate. For every test case presented in this

paper the numerical results are compared with the analyt-

ical results presented by solid lines in the figures. The

origin x = (O, O) is located at the center of the dielectric

object; the magnitude of the electric field component Ez

is shown along the x ~ and Xz axes, while the magnitude

of the electric field El is shown along the Xz axis.
In our first test case we take the coaxially layered

cylinder where the inner layer (of radius r = 7.9 cm)

consists of muscle with e, = 72 and u = 0.9 S/m. The

outer layer (of radius r = 15 cm) consists of fat with

●, = 7.5 and cr = 0.048 S/m. We consider three different

discretizations, shown in Fig. 1. The frequency of the

incident field is 100 MHz. First we have used a mesh of

lV~ x MS = 16 x 16 (Fig. l(a)) and ~c X Mc = 32x 32. In

order to investigate the discretization error, we have

subdivided the geometry of Fig. l(a) to give a mesh size of

IVs x MS = 31 x 31 (Fig. l(b)) and NC X Mc = 64x64.

Further, we have increased the number of mesh points to

;U
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Fig. 6. Comparison between the analytic solution, MGC3 [10], and the

present weak formulation for the second test case.

obtain a better approximation of the coaxially layered

cylinder using a mesh size of IV~ X MS= 64 X 64 (Fig. l(c))

and IVc x &fc = 128x 128.
The numerical results associated with these configura-

tions are presented in Figs. 2, 3, and 4. Fig. 2 shows the

numerical convergence rate for the geometries of parts

(a), (b), and (c) of Fig. 1. It is observed that the present
weak formulation reaches the error criterion, Err, of less

than 10-3 within a reasonable number of iterations. Fig. 3

presents the magnitudes of the electric field for the

geometries of parts (a) and (b) of Fig. 1 as well as the

analytic solution. It is observed that for a mesh of 16X 16

(the geometry of Fig. l(a)) good numerical results are

arrived at. The differences between the analytical results

and the numerical results are caused by the staircase
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incident field is 300 MHz. First we have used a mesh of

N~ x MS= 16x 16 (Fig. 5(a)) and Nc X Mc = 32x31! and

we have used a mesh of N’s x MS = 64x 64 (Fig. 5(b)) and

Nc X Mc = 128X 128. The numerical results associated

with these geometries are presented in Figs. 6 and ‘7. The

numbers of iterations to obtain an error less than 10 – 3

are 224 and 244, respectively. These results are compared

with the analytical results of the coaxially layered cylin-

der. Fig. 6 compares, for the geometry of Fig. 5(a), the

magnitudes of the electric field with the numerical results

of the MGC3 method (of Joachimowicz and Pichot I[1O]).

It is observed that the present weak formulation performs

substantially better than MGC3.

VI. CONCLUSIONS

We have presented a weak formulation of the conju-

gate gradient FFT method for dielectric scatterers. It is

117., 0“41\ I observed that the present weak form of the conjugate

‘“”!&
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5

Fig. 7. Comparison between the analytic solutlon and the present,—
method for the second test case.

approximation of the curved boundary. The numerical

results with respect to a more accurate approximation of

the circular boundaries (Fig. l(c)) are shown in Fig. 4,

together with the numerical results with error criterions

of 1’% and O.1%, respectively. In Fig. 4 it is demonstrated

that an error criterion of 1% is too weak, while for an

error criterion of O.1% excellent agreement between the

present method with the analytical solutions is arrived at.

In our second test case we take the coaxially layered

cylinder where the inner layer (of radius r = 9.4 cm)

consists of muscle with ●, = 54 and a = 1.4 S/m. The

outer layer (of radius r = 15 cm) consists of fat with

c, = 5.7 and u = 0.05 S/m. We consider two different

discretizations, shown in Fig. 5. The frequency of the

gradient FFT method for 2-D TE scattering prol>jem

yields excellent agreement with the analytical results for

the test problems. Modeling the curved boundaries using

a rectangular mesh seems to be feasible and discretization

errors tend to vanish for increasingly finer discretizations.

Since we have maintained the simple convolution struc-

ture of the vector potential, we do not have matrix-vector

multiplications in the spectral domain. We only have

matrix-vector multiplications in the spatial domain, but

these are over the domain of the dielectric object (only.

All told, this means that the computation time of our

present method is even less than the computation time of

the conjugate gradient FFT methods discussed in the

Introduction.

We have solved the integral equation for the unkrlown

electric flux density, D; hence the enforced continuity of

D yields a correct implementation of the boundary con-

dition at the interfaces of discontinuity. Therefore we

have obtained a much simpler scheme than the one of

Joachimowicz and Pichot [10]. In the present scheme the

surface integrals that are directly related to surface

charges at the surfaces of discontinuity do not occur.

Borup et al. [8] have demonstrated that the methc~d of

finite differences in the time domain (FD–TD) exhibits

better numerical performance than the conjugate gradient

FFT methods. Numerical results presented in this paper

tend to demonstrate that the present weak form of the

conjugate gradient FFT method produces more reliable

and efficient results. At this moment it is not clear which

method exhibits better efficiency and performance.

Therefore, extensive research on both methods seems to

be relevant in the future.
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