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A Weak Form of the Conjugate Gradient
FFT Method for Two-Dimensional TE

Scattering Problems

Peter Zwamborn and Peter M. van den Berg

Abstract —The problem of two-dimensional scattering of a
transversal electric (TE) polarized wave by a dielectric object
can be formulated in terms of a hypersingular integral equation,
in which a grad-div operator acts on a vector potential. The
vector potential is a spatial convolution of the free-space Green’s
function and the contrast source over the domain of interest. A
weak form of the integral equation for the unknown electric flux
density is obtained by testing it with rooftop functions. As the
next step, the vector potential is expanded in a sequence of the
rooftop functions and the grad-div operator is integrated ana-
Iytically over the dielectric object domain only. This method
shows excellent numerical performance.

1. INTRODUCTION

N the development of biological applications in elec-

tromagnetics, numerical schemes are needed for fast
and accurate modeling of the electromagnetic field inside
a strongly inhomogeneous and lossy dielectric object ex-
posed to a known incident field. The problem of the
electromagnetic scattering by an inhomogeneous dielec-
tric object can be formulated in terms of an integral
equation for the electric field over the domain of the
object. Numerous methods have been developed, and it is
not our objective to survey them all. Instead, we concen-
trate on the k-space methods. It is our opinion that
methods of this type are applicable for three-dimensional
electromagnetic scattering problems owing to their stor-
age and computational efficiency.

The first method for solving the electric field integral
equation over the domain of a dielectric object was devel-
oped by Richmond [1], [2]. Here the method of moments
was used with pulse expansion functions and point match-
ing. The method of moments, however, needs an inver-
sion of a (large) matrix, limiting the application of this
method. Bojarski [3] introduced the k-space method, ob-
taining an iterative approach that reduces the storage and
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computation by using a fast Fourier transform algorithm
for computation of the spatial convolution that occurs in
the integral equation. Subsequently, the conjugate gradi-
ent method combined with the fast Fourier transform was
developed [4], [5]. For the three-dimensional problems
and the two-dimensional case of TE polarization, there
were serious doubts as to the applicability of this conju-
gate gradient FFT method using pulse expansion finc-
tions [6], [7]. Borup et al. [8] showed that in the conjugate
gradient FFT method serious inaccuracies are observed
for cylindrical objects in the TE polarization case. Re-
cently, Joachimowicz and Pichot [10] analyzed the source
of these errors. They introduced an integral equation
formulation using generalized functions and included sur-
face integrals in relation to surface charges at the discon-
tinuity surfaces. Better numerical performance has been
demonstrated, although erroneous behavior can still be
observed.

Recently, the weak form of the conjugate gradient FFT
method has proved to be an efficient and accurate scheme
for solving perfectly conducting plate scattering problems
[9]. Therefore, in the present paper, we employ this weak
form of the integral equation by testing the integral
equation with rooftop functions. Subsequently, a suitable

.expansion procedure of the vector potential in the inte-

gral equation is carried out. The first result is that the
grad—div operator acting on the vector potential of this
hypersingular integral equation is integrated analytically
over the domain of the dielectric object only. The second
result is that we have maintained the simple scalar form
of the convolution structure of the vector potential (in
fact, two scalar convolutions). This means that the compu-
tation time of each iteration of our present scheme is
even less than the one of all previous conjugate gradient
FFT methods described above. Finally, it is noted that we
formulate the integral equation in terms of the unknown
electric flux density rather than in terms of the electric
field. The enforced continuity of the electric flux density
yields a correct implementation of the boundary condition
at the interfaces of (strong) discontinuity. Therefore,
the present scheme is much simpler than the one of
Joachimowizc and Pichot [10]. No surface integrals that
are directly related to surface charges have to be intro-
duced.
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We present numerical results for some two-dimensional
test problems. First, these two-dimensional test problems
are less computationally involved. Second, the two-dimen-
sional TE case exhibits stronger polarization effects than
the three-dimensional case. Effects of strong inhomo-
geneities are more visible in the two-dimensional TE case
than in the three-dimensional case. Numerical computa-
tions have been carried out for coaxially layered cylinders.
The numerical results are compared with existing analyti-
cal solutions, and it is demonstrated that the present
weak formulation shows excellent results. Comparing the
results with the ones presented by Joachimowicz and
Pichot [10], it is directly observed that the weak form of
the conjugate gradient FFT method produces much more
accurate numerical results. This indicates that the present
weak formulation of the conjugate gradient FFT method
can be considered a simple and efficient tool for solving
(strongly) inhomogeneous lossy dielectric scattering prob-
lems.

II. Tue DomaIN INTEGRAL EQuaTtioN

The vectorial position in the two-dimensional space is
denoted by x = (x,, x,). The unit vectors in the x; and x,
directions are given by i, and i,. The time factor
exp(—iwt) has been used for the field quantities in the
frequency domain. We consider the problem of scattering
by an inhomogeneous dielectric object with complex per-
mittivity

o(x)

e(x)=¢€,(x)ey+i

(1)

where €, denotes the relative permittivity of the object
with respect to the lossless and homogeneous embedding
with permittivity €,, and o denotes the electric conductiv-
ity of the object. The incident electric field is denoted by
E'=(E}, E}). In this paper, we formulate the scattering
problem as a domain integral equation for the unknown
electric flux density D =(D,, D,) over the object domain

S as
E'(x)= D(x) _ (k§ +grad div) A( x)
e(x) 0 TE (%),

where k,=w(eguy)*/? and the vector potential 4=

(A,, A,) is given by
D(x)
x(x) (3)

€0

xeSs. (2)

A(x) =9‘1[9“[G(x)]9~

in which .% and %' denote the forward and inverse
two-dimensional spatial Fourier transforms, and the nor-
malized contrast function, y, is given by
e(x)—¢,
x)=———.
x(x) =— B

(4)

Further, the two-dimensional Green’s function, G, is given
by

i
G(x) =ZH(§1)(k0|xl), x €R2 (5)

II1. TestiNG AND ExpANSION PROCEDURE

We first introduce a discretization in the spatial domain
x=(x,,x,). We use a square mesh with a grid width of
Ax in both directions. For convenience, the discrete
values of x are given by a staggered grid [9]:

1
x = ((n — 5) Ax,m Ax)

1
x? = (nAx,(m—;)—) Ax).

(6)

The boundary of the discretized object now consists of
straight line segments parallel to the x, or x, axis. We
assume that the discretized boundary 95 of the scattering
domain S lies completely in the embedding where y = 0.
This is always possible, since we can extend the definition
of the scattering domain S by extending it with a zero
contrast function y. In each square subdomain with cen-
ter x=(nAx,mAx) and dimensions Ax X Ax, we as-
sume the complex permittivity to be constant with values
€, »- Note that jumps in the (complex) permittivity func-
tion may occur at x;=(n—1/2)Ax and at x,=(m—
1/2)Ax.

In order to cope with the grad—div operator in (2), we
test the two scalar equations of (2). Therefore we multiply
both sides of this equation by a vectorial testing function
WP (xP) ~x), p=1, 2, and integrate with respect to x
over the object domain S. The testing vector function
$P(x)=pP(x)i, is a suitably chosen vector function
that will be defined later. We then obtain

/S $P(x2), — x)E(x) dx

Dp(x)
a0~

- kgjl/;m(x;fj,; — x)A,(x) dx
S

= [o (=), ~ x)
S

+fsaplp<w(x;{>,>n - x)divA(x) dx,

(p)
xn.m

€s, p=12. (7)

The last integral on the right-hand side of (7) is obtained
by using Gauss’s theorem on each subdomain where
' P(xP) — x)divA(x) is continuously differentiable and
by using the continuity of the normal component of this
function through the interfaces between these subdo-
mains. In the derivation of (7) we have assumed that
Y P(x(P), — x) vanishes for x €4S. Further, d, denotes
the partial derivative with respect to x,, p=1,2. In (7)
we expand the electric flux density, D, and the vector
potential, 4, as

Dp(x) = fozdp,k,llﬁ(p)(x - xgcpl))

>

(8)

Ap(x) = kzlap;k,lw(p)(x - x?cpl)) (9)
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Using these expansions in the right-hand side of (7),

carrying out the divergence operator, and interchanging vectors b(I’) and ¢ are obtained as

the order of integration and summation, we obtain the
weak form of the integral equation

e (x2) =T [uP (22 ) d,
k1
— k3o P(xP) s K,
+ 22: P a, ]
=1
xPeS, p=1,2 (10)
in which
el (x$2)) /zp‘” x(7) — x)Ei(x) dx (11)
WP, 600) = [0 (2, - %)
e(Gx) v P(x ~ x)) de (12)

V(D x) = 5P (0, = X)) (x = x7) e

(13)

W, (X8 x0) fap(,l/(”)(xfl{’,)n = x), D (x — x{)) dx.
3

(14)

In view of the partial derivatives in (14), the derivative
with respect to x, of the function ¢‘”(x) must exist.
Therefore we take the rooftop functions [9] as testing and
expansion functions, viz.

$O(x) = A(x ;32 Ax)TT(x,5Ax)
$O(x) = (x,;Ax)A(x,;2 Ax) (15)

in which A(x;2 Ax) is the one-dimensional triangle func-
tion with support 2 Ax in the x direction, and II(x; Ax) is
the one-dimensional pulse function with support Ax in
the x direction. The value of e' in (11) can be integrated
analytically for some partlcular choice of E,. With (15),
we are also able to calculate the functions u(P)(x) vP(x),
and w, (x) analytically. Substitution of the results in (10)
_ leads to

i) £ (of

JH, mdl n+k—2,m +Cka1 n+k-2, m)
2 2
= X X bk o miiet (16)
k=11=1
3
( (2) )= Z (bl(zzt mY2inm+1-2 + cla2;n,m+l——2)

(17)

2 2
- X Ztklal;n+k—1,m+l—2
=1

in which x{?) € §. The coefficients b{?) ,, and c, of the
€9
€, 1,m
Ax)’ | 2¢,  2e
e P (18)
6 €r-1,m €n,m
€9
En,m
€0
€n,m—l
Ax)’ | 2¢  2e
o, = S| 2 2 (19)
6 €rm—1 €n,m
€0
€n,m
k3(Ax)? —1
= “‘—0(6—) 41+ 2 (20)
1 -1
while the coefficients ¢;; of the matrix ¢ follows from
_{ 1 -1
t= ( _1 1 ) (21

With our particular choice of expansion functions, the

quantities d,,., ,, and @y, ATC
D,(xP),)
dp'n m=_7 p=172 (22)
in, e
Qpin,m= Ap(x;{];)n): p=1.2 l[23)

and are related via (3), in which the Fourier transforms
are replaced by discrete Fourier transforms (DFT’s). Sub-
stituting (8) into (3) and taking into account that the DFT
is the numerical counterpart of the continuous Fourier
transform when a trapezoidal integration rule is used, we
arrive at

@y m=DFT L[ F[GIDFT [ x|

D n.m“%pin,m
p=12 (24)
in which
Xr(ll)m=X(x£ll) 1/2, m)—;X( n+1/2 m) ‘(25)
x,(f)m—x(x;)m 1/2 )"Z'X( n m+1/2). (26)

As next step, in (24) we have to replace the continuous
transform of the Green’s function, G, by a discrete one.
In order to cope with the singularity at x =0, we use a
global representation consistent with our weak formula-
tion. We integrate the Green’s function over circular
patches with centers at the points x ={(nAx,mAx) and
radius of 1/2Ax and divide the results by the surface
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Fig. 1. The different geometries of the coaxially layered cylinder of the

first test case.

area 7(1/2 Ax)?. The results are [1]

4
gn m =
’ W(Ax)z patchmm4

With this global representation of the Green’s function,
the discrete values of the vector potential (cf. (24)) are

obtained as

_ i |
/ ~H§O(kolx) dx =

Apinym = (Ax)ZDFT*l[DFT[gn,m]DFT[Xz(ﬂanp;n,mH s

p=1,2.

(28)

Equations (16), (17), and (28) represent an operator
equation for the unknown values of 4, , ,,. To solve this
operator equation iteratively, a conjugate gradient scheme
[4] can now be applied.

IV. NUMERICAL IMPLEMENTATION

Using numerical techniques yields bounded domains
for the evaluation of the discrete Fourier transform. In
order to obtain reliable numerical results, we have to
investigate this truncation procedure [10], [11]. Using the
discrete Fourier transform and the convolution theorem,
the numerically approximated vector potential can be
written as follows:

ap;n,mz(A'x)2 Z gn—n’,m—m’jp;n’,m’7 p=1’2 (29)

n,m

in which the discrete functions j,,, , are given by

jp;n,m=Xl(1€r)ndp;n,m‘ (30)

From (30) and (4) it is easily verified that j,, , =0,
x{P) &S. This restricts the necessary upper and lower
bounds in the summation of (29). Let us assume that the
domain S of the object lies completely inside a rectangu-
lar domain:

(N — D Ax <x, <(np,+1)Ax (31)

max

(Mg — D) Ax <xy <(mp,, +1)Ax. (32)

In this rectangular domain we have Ny=n,_, —#n, +1
mesh points in the x, direction and Mg=m, —m, +1
mesh points in the x, direction. For a correct evaluation
of a,., ., if x{7) €, it has been shown by Brigham [13]
that (29) can be computed as a cyclic convolution using
DFT. The relevant DFI’s are defined on an extended
rectangular domain with N mesh points in the x; direc-
tion and M, mesh points in the x, direction, such that

Ne > 2N M- >2M;. (33)
Ax ~
Jl(ko——)Hél)(ko\/nz +m? Ax)
Axk, 2 27
H®| k A b if n=m=0
Axko U2 Ak, BT

Then, the values of a,,, , are obtained as
_ 2 -1 ~ ot
ap;n,m—(Ax) DFTNC,MC[gk,l]p;k,l]7

xP es, p=12 (34)
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Fig. 2. Numerical convergence rate for the different geometries of the
first test case.
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Fig. 3. Comparison between the analytic solution and the present
method for the first test case.

with
(35)

(36)

8k = DFTNC,MC[gn,m]
];;k,l = DFTNC,MC [jp;n,m] .

Here, the subscripts N, and M, denote the relevant
DFT numbers. If the discretization of the object is chosen
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Fig. 4. Comparison between the analytic solution and the present
weak formulation for Err = 0.01 and Err = 0.001, respectively, for the
first test case.

with proper values of Ny and M, the minimum values of
Ny=2Ng and M, =2M; will be sufficient to carry out
the convolution of (29), provided ), € S. This has been
observed by Barkeshli and Volakis [12].

V. NuMERICAL RESULTS

The numerical convergence is measured by the normal-
ized root-mean-square error, Err:

(|

Err=+———
[

37
in which ||r|| denotes the norm of the residual error in
the satisfaction of the operator equation of (16) and (17)
over the domain S of the dielectric object in the nth
iteration. All computations were carried out on a VAX
3100 workstation. The DFT’s are efficiently computed
using fast Fourier transform (FFT) algorithms. The itera-
tion process is stopped when the normalized root-mean-
square error falls below 1073, Demonstrating that this
strong error criterion has to be imposed for our tests
cases, we also present numerical results for one test case



958 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 6, JUNE 1991

T9-aXis
Configuration 2a
Ex’
—
Zy-axis
To-axis
Configuration 2b
E«'
R
,-aXis

Fig. 5. The different geometries of the coaxially layered cylinder of the
second test case.

wherein the iteration process is stopped as soon as the
normalized root-mean-square error is less than 102, The
incident field is taken to be a uniform plane wave propa-
gating along the x; axis, with the unit electric field vector
parallel to the x, axis. In all cases we have taken a zero
initial estimate. For every test case presented in this
paper the numerical results are compared with the analyt-
ical results presented by solid lines in the figures. The

origin x =(0,0) is located at the center of the dielectric:

object; the magnitude of the electric field component E,
is shown along the x, and x, axes, while the magnitude
of the electric field E, is shown along the x, axis.

In our first test case we take the coaxially layered
cylinder where the inner layer (of radius r=7.9 cm)
consists of muscle with ¢, =72 and o =09 S/m. The
outer layer (of radius » =15 cm) consists of fat with
€,=7.5 and o =0.048 S/m. We consider three different
discretizations, shown in Fig. 1. The frequency of the
incident field is 100 MHz. First we have used a mesh of
Ng X Mg=16%16 (Fig. 1(a)) and N X M =32X32. In
order to investigate the discretization error, we have
subdivided the geometry of Fig. 1{a) to give a mesh size of
NgX Mg=31%31 (Fig. 1(b)) and N, X M. =64X64.
Further, we have increased the number of mesh points to

1.0
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0.4 o o
0.2
0 + + +
-0.15 -0.1 -0.05 0. 0.05 0.1 0.15
Zy-axis
1.0
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0—0.15 -0.1 -0.05 O, 0.05 0.1 0.15
z1-axis .
0.6
0.4
B4
0.2

0
-0.15 0.1 -0.05 O,

Zy-axis

0.05 0.1 0.15

Fig. 6. Comparison between the analytic solution, MGC3 [10], and the
present weak formulation for the second test case.

.

obtain a better approximation of the coaxially layered
cylinder using a mesh size of Ny X Mg = 64 X 64 (Fig. 1(c))
and No X M, =128X128.

The numerical results associated with these configura-
tions are presented in Figs. 2, 3, and 4. Fig. 2 shows the
numerical convergence rate for the geometries of parts
(a), (b), and (¢) of Fig. 1. It is observed that the present
weak formulation reaches the error criterion, Err, of less
than 1073 within a reasonable number of iterations. Fig. 3
presents the magnitudes of the electric field for the
geometries of parts (a) and (b) of Fig. 1 as well as the
analytic solution. It is observed that for a mesh of 16X 16
(the geometry of Fig. 1(a)) good numerical results are
arrived at. The differences between the analytical results
and the numerical results are caused by the staircase
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Fig. 7. Comparison between the analytic solution and the present
' method for the second test case.

approximation of the curved boundary. The numerical
results with respect to a more accurate approximation of
the circular boundaries (Fig. 1(c)) are shown in Fig. 4,
-together with the numerical results with error criterions
of 1% and 0.1%, respectively. In Fig. 4 it is demonstrated
that an error criterion of 1% is too weak, while for an
error criterion of 0.1% excellent agreement between the
present method with the analytical solutions is arrived at.
In our second test case we take the coaxially layered
cylinder where the inner layer (of radius r=9.4 cm)
consists of muscle with €, =54 and =14 S/m. The
outer layer (of radius r =15 cm) consists of fat with
€,=5.7 and 0 =0.05 S/m. We consider two different
discretizations, shown in Fig. 5. The frequency of the

incident field is 300 MHz. First we have used a mesh of
Ng X Mg =16x16 (Fig. 5(a)) and N X M, =32x32 and
we have used a mesh of Ny X M = 64X 64 (Fig. 5(b)) and
Ne X M-=128x128. The numerical results associated
with these geometries are presented in Figs. 6 and 7. The
numbers of iterations to obtain an error less than 1073
are 224 and 244, respectively. These results are compared
with the analytical results of the coaxially layered cylin-
der. Fig. 6 compares, for the geometry of Fig. 5(a), the
magnitudes of the electric field with the numerical results
of the MGC3 method (of Joachimowicz and Pichot [10]).
It is observed that the present weak formulation performs
substantially better than MGC3.

V1. CoNcLUSIONS

We have presented a weak formulation of the conju-
gate gradient FFT method for dielectric scatterers. It is
observed that the present weak form of the conjugate
gradient FFT method for 2-D TE scattering problem
yields excellent agreement with the analytical results for
the test problems. Modeling the curved boundaries using
a rectangular mesh seems to be feasible and discretization
errors tend to vanish for increasingly finer discretizations.

Since we have maintained the simple convolution struc-
ture of the vector potential, we do not have matrix-vector
multiplications in the spectral domain. We only have
matrix-vector multiplications in the spatial domain, but
these are over the domain of the dielectric object only.
All told, this means that the computation time of our
present method is even less than the computation time of
the conjugate gradient FFT methods discussed in the
Introduction.

We have solved the integral equation for the unknown
electric flux density, D; hence the enforced continuity of
D yields a correct implementation of the boundary con-
dition at the interfaces of discontinuity. Therefore we
have obtained a much simpler scheme than the one of
Joachimowicz and Pichot [10]. In the present scheme the
surface integrals that are directly related to surface
charges at the surfaces of discontinuity do not occur.

Borup et al. [8] have demonstrated that the method of
finite differences in the time domain (FD-TD) exhibits
better numerical performance than the conjugate gradient
FFT methods. Numerical results presented in this paper
tend to demonstrate that the present weak form of the
conjugate gradient FFT method produces more reliable
and efficient results. At this moment it is not clear which
method exhibits better efficiency and performance.
Therefore, extensive research on both methods seerus to
be relevant in the future.
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